FDTD Glossary
A Glossary of FDTD and electromagnetic terms.
Contents |
Glossary
Name | Definition | Notes | |||||
---|---|---|---|---|---|---|---|
ABC | absorbing boundary conditions | Taflove p.? | |||||
angular Frequency |
|
radians/second Eisberg page129; GriffithsED page 368 |
|||||
complex division | x = a + ib, y = c + id x / y = ((ac + bd) + i(bc – ad)) / (c2 + d2) |
||||||
complex multiplication | x = a + ib, y = c + id x * y = (ac – bd) + i(ad + bc) |
||||||
evanescent waves | decaying waves | Balanis page 415 | |||||
exp(x) | lim (1 + x / alpha)alpha, as alpha => infinity | ||||||
Far Field | Distance from Source to Target >> wavelength | Taflove p.477 (near to far field, Taflove pp. 478,203, ch8) | |||||
function, odd | f(-x) = -f(x) | Griffiths page104 | |||||
function, even | f(-x) = f(x) | Griffiths page104 | |||||
Hertz potentials | polarization potentials | Jackson page280 | |||||
magnetic monopoles | Jackson pages273-275 | ||||||
Magnitude of A |A| |
|A| = sqrt(Ax2 + Ay2 + Az2) = sqrt(A · A) | Feynman I-11-9; GriffithsED pp. 5,9; Edminister p.1 (absolute value) (also see absolute square) | |||||
material, anisotropic, non-isotropic | constitutive parameters are function of direction otherwise isotropic | Balanis page 71; Taflove p.52; Sadiku page 7 | |||||
material, dispersive | Constitutive parameters are a function of frequency of the applied field otherwise non-dispersive (different frequencies travel at different speeds in the material) |
Balanis page71; see section 4.3, Taflove p.52, (Taflove p.227: linear dispersion, non-linearity, non-linear dispersion, gain) | |||||
material, dissipative | absorbs electromagnetic radiation, converts to thermal energy? | Taflove p.52 | |||||
material, homogeneous | constitutive parameters are not a function of position within the material, otherwise non-homogeneous (inhomogeneous) | Balanis page 71; Taflove p.52; Sadiku page7 | |||||
material, linear | constitutive parameters are independent of the applied field, otherwise non-linear | Balanis page 71; Taflove p.52; Sadiku page7 | |||||
MM | Method of Moments | Taflove p.2 | |||||
Modes | Field configurations which satisfy Maxwell’s equations and the boundary conditions are called modes (A mode is a particular field configuration) common modes: TEM, TE, TM |
Balanis pp. 129, 261 | |||||
Near Field | Taflove p.477 (near to far field, Taflove pp. 478,203, ch8) | ||||||
orthogonal | perpendicular (Euclidean geometry) | GriffithsQM page27, GriffithsQM p.79 | |||||
PEC | perfect electric conductor | Taflove p.? | |||||
PMC | perfect magnetic conductor | Taflove p.? | |||||
polar vectors | Jackson pages270-273 | ||||||
pseudo-vector | (axial) | Jackson pages270-273; GriffithsEM page204 | |||||
quasi-static | Taflove1998 page627; Jackson page219; GriffithsED pp.308-309 | ||||||
RMS (root mean square) |
For a plane Wave:
Where,
|
see Time average of <A> | |||||
SAR | Specific Absorption Rate | (watts/kg) Taflove page 530 | |||||
spacetime, curved | general theory of relativity (gravitation) | ||||||
spacetime, flat | special theory of relativity | ||||||
Time average of A <A> |
To calculate
for a plane wave:
note:
therefore:
|
Feynman I-24-1,2; GriffithED page381 | |||||
TE | Transverse Electric Mode | Taflove p.71 | |||||
TEM | Transverse Electromagnetic Mode, (E,H contained in a plane) | Balanis pp.129-130; Modes defined: Balanis page 129 | |||||
TM | Transverse Magnetic Mode | Taflove p.71 | |||||
waveNumber |
|
Eisberg page129 also called propagation vector (or wave vector), Bohm p.12; GriffithsED pp. 368,379 |
See Also
- Fdtd Main Index Page (with example code)
- Maxwell’s Equations
- The Yee Algorithm
- 2D UPML Algorithm and Theory
- The 2D FDTD Wave Algorithm and Theory
- The 2D FDTD Wave Hz Algorithm
- Analytical Solution: Infinite Magnetic Line-source
- Numerical Methods
- Spherical and Cartesian coordinates
- Vector Algebra
- Fundamental and Derived Units
- FDTD References
- FDTD Resources