Numerical Techniques in Electromagnetics

THE FINITE-DIFFERENCE TIME-DOMAIN
(FDTD) METHOD - PART |

NATALIA K. NIKOLOVA
talla@mcmaster.ca
ITB-A220, ext. 27141

Nikolova 2004 1


mailto:talia@mcmaster.ca

1. Outline

 finite differences for derivative approximation

the wave equation in 1-D
Initial/boundary conditions and excitation sources
e generalisation to 2-D and 3-D
 Maxwell's equations; 2-D problems: TM and TE modes
 Yee's algorithm in 3-D space
 Yee's algorithm in 2-D space
* Introduction to absorbing boundary conditions

« PROJECT: determine the modes of a rectangular
waveguide
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3. Finite differences for derivative approximation

1st order derivatives

forward FD
df () dfi  fiq—f;
dx dx AX

backward FD

df () dfi  fi—fi4
dx dx AX

central FD
df (x;j) _dfy  fii—fia
dx dx 2AX
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3. Finite differences for derivative approximation — cont.

accuracy
Taylor expansions
at Xj +aX , .
f (X +aX)= fig=fi +AX%+1AX2 d zi +1AX3 d Zi +0*
4 & 2 dx 6 dx
dfi  fi= i 500
dx AX
at Xj —aX , .
f(x—ax) = fig= foax Iy L@@ 1 ad i

X
dx 2 X2 6 dx®

o
dfi _ fi—fir, o
dx AX

forward and backward FDs have 1st order accuracy



3. Finite differences for derivative approximation — cont.

accuracy: central FDs have 2nd order accuracy!

combine both expansions to obtain: afi _ fa=Tia |
dx 2AX

central FD at half steps

f(x)]
fi 4 | df (x; +ax/2)
ir dx
. L _Ofigye _ fia— i L 02
' | dx AX




3. Finite differences for derivative approximation — cont.

second-order accurate backward/forward approximations
of 1St order derivatives

dfi _ -3 fi +4 fi+1 — fi+2 df, N 3 fi -4 fi—l + fi_2
dx 2aX dx 2aX

2nd order derivatives

: 2 f. 3¢
fi+1:fi+AX%+1AX2d i 1,807

. x>=—+0"
dx 2 dx* 6 dx ®+
. 2 ¢ 3¢
fig =T, —AX%-F;AXZ d zl —EAXB d 2' +0*

dx 2 dx 6 dx

dzf _ fi_1—2fi + fi+1
dx? AX?

+0?
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3. Finite differences for derivative approximation — cont.

Laplace operator in 2-D space (X, Y)

2 2
Vi f _0 Z +8 I
ox< oy
V2 f = figj + fi+12,j —- 21 N fi jo1 + fi,szrl_Zfi,j
AX AY
LY
Ofi,j+1
fL_l’ ) o [ J fio+1’ j»
If aX=ay=ah - X
fy it fra it fijat fia—4f
2 o 1] 1+1, ] I, -1 I, J+1 I, ]
Vig T = ah? ofi j1
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3. Finite differences for derivative approximation — cont.

Laplace operator in 3-D space (X,Y,z)
o° f . o°f o°f

Vef = +
ox*  oy* oz° fi,j,k+1;Z
i fi—l,j,k
V2§ ~ fisgjk + fisnjk —2Fijk .
AX? fl j—Lk f| ik
@ RSN 6 /S PN
fijak + fijeaak — 210k fi i1k
AyZ - f - ;
I+1,j,ﬁ/
fijka+ fijrer — 21k Y el
> i okt
AL

If aX =AY =al =ah
ficgjk + fivnjk + fijoak + Fijoak + Fijrea + Tijraa —6 1

V2f ~
Ah? 9




4. The wave equation in 1-D space

o°f 10°f

=—(0(Xx,t
ox° ¢° ot? g(x.1)

general solution

f(xt)=f+(x—ct)+ f(x+ct)
/ \
wave traveling in the +X direction  wave traveling in the -X direction
to determine the particular solution, we need
2 boundary conditions:

at x=0 al X = Xmax

of of
f(0,t) or — f (Xmax,t) or —
(0,1) x|, (Xmax 1) ~

X=Xmax
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4. The wave equation in 1-D space — cont.

2 initial conditions: f(x,0) and %
t=0
Discretization
D, fi:ll/z f(iax,nat) = ;"
// \\\‘ Ny-1 Dy fily)2 =
01 2 3 4 N X() g0 gn OF
~\' 2 I+ OXIx=(i+1/2) ax,
fin Dt fin+1/2 t=nat
D, f;"/2 D, f™Y/2 =
ﬂ \\A\A Ni —1 fi™ — f;" zAtE;—];X "
o———o—(O—o—{1—o—{—o—1—fo——o0—1—0—{—0—11+—0—>» =iaX,
0 1 2 3 4 N, t(n) t=(n+1/2)at

n n
fi", Dy fi+1/2 11



4. The wave equation in 1-D space — cont.

the discretized 1-D wave equation
Dt fin+1/2 . Dt fin—1/2 - fn _92 fin 4 fiil

1+1 + n
(Cal)? % J
Dx fin+1/2 = Dy fin—1/2 + kfi:]‘l —-2f"+ fi—% -I-AXZgin)
4 Dy

fin+1 _ fin 4 Dt fin+1/2

The above update scheme requires: (i) the function values
at the n-th moment of time and (ii)) the derivative values
from the previous step at the (n-1/2) moment of time.

Thus, for each point of space, two numbers are stored In
the computer memory: f;,D; f; .
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4. The wave equation in 1-D space — cont.

Implementation of boundary conditions

(a) Dirichlet BC (DBC)
prescribes the function value at the boundary

fy' =by, N=12,...
fl\rllx :bN, n=1,2,...

If the function boundary value is zero: homogeneous BC

Example: homogeneous DBCs on a discrete mesh
Homogeneous DBC at X=0 Homogeneous DBC at X =aX /2
o——0—O—0—1+—0—+—0—1+f§ O—O—0——0——0—0—0—1—d

0 f1

i,
Yoo i = —f]

Homogeneous DBC at X =AX
o—O—0—O—0—1—0——0—1—§
0 I 2
f n

n _
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4. The wave equation in 1-D space — cont.

(b) Neumann BC (NBC)
prescribes the boundary value of the function derivative

n
Ao _ By, n=1,2,...
OX
of "
X = BN’ n=12,...
OX
Example: homogeneous NBCs on a discrete mesh
Homogeneous NBC at )E:O Homogeneous NBC at X =aX/?2
O _0—0_—0—0~0—0——0—1— o—1—o0——0—O—0—{+—0—1f
101 2 03T 2 S
fon — (4 fln — fzn)/g fon — fln
Homogeneous NBC at X =aX
o—1—o0—0O—0——0—{+—0—1f
0% 2 ‘
fon — f2n
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5. The wave equation in 2-D and 3-D space

The only difference with the 1-D wave equation is that the
second-order derivative wrt X is replaced by the Laplace
operator A=V?.

Discretized wave equation

a
Dtn+1/2 fi,j,k _ Dtn—1/2 fi,j,k _|_ LfI ik -I-AhZQI jk)

where L is the discrete Laplace operator, and
ah = min(Ax,Ay,Az)

Lf ~ah?Af
in 2-D

Lf = ( j(f,ﬂj Ij+f J)+( j(flﬁl 'J+fljl)
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5. The wave equation in 2-D and 3-D space — cont.
in 2-D
when aX =ay =ah
Lf =(fily; + fily; + f;

Nt fili —41)

1+1, I, j+
in 3-D
Ah 2
Lf (ij (fl+1jk Ijk+fljk)+

A
( ] (flj-l-lk Ijk+flj1k)+

( ) (fIJk+l IJk+f|Jk1) AXZAy:AZ:Ah
/

nikolon LF = (Filg i + Filg i+ filjoak + filjoa + Filjusn + filjxa —6 i)



6. Space quantization — minimal spatial step

The size of the minimal spatial step ah is crucial for the
accuracy of the algorithm.

Consider a sinusoidal wave propagating along +X in free
space.

P f(x,t) =sin( fx — aot)
fp=wlc - wave number (phase constant)

The discretized wave Is
fi" =sin(fiah — wnat)

The 2-nd order x-derivative of the analog wave is

0 f )
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6. Space quantization — minimal spatial step, cont.

The 2-nd order x-derivative of the discretized wave is

_1—2fn + f|+1 2
ah?  ah?

In order both derivatives to be equal

(cos Sah—1)sin(Biah — wnt)

2 2
cos,b’Ah—lz—'B ZAh

must hold. The above equality is accurate to 1% if
Pah<0.35=7/9

In terms of the wavelength
sh<A/18, A=2x1p
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7. Time quantization — minimal time step

A similar analysis with respect to the time derivatives of
the analog and digital sine wave shows that the time
step has to satisfy

At<T/18 T=271w

8. Stability criterion (Courant-Friedrich-Levy criterion)

Explicit time-stepping algorithms for the solution of
dynamic problems are prone to instabilities if certain
criteria are not satisfied. Instability I1s a spurious
(nonphysical, due to numerical errors) increase of the
numerical values of the field as the time-marching
proceeds. Often, this Is observed as an exponential

INncrease.
Nikolova 2004
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8. Stability criterion — cont.

Consider the numerical eigenvalue (characteristic number) A
generated by the discrete time derivative operator:

fMhk N =21k + f" n
I o === ARk
ot al
At any time step, the field at a given point in space can be
Fourier-transformed with respect to time to produce Its

frequency spectrum. Each mode (of frequency w) Is

n £ Jonat
f"y = 1 5 el

provided that the medium does not have gain or sources. We
also ignore losses as they would lead to a better scenario

than the steady-state representation above.
We substitute in the finite-difference operator above:
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8. Stability criterion — cont.

2 — Joat laoat
0 flyk el -2+e"" f inot _ Agn
2~ 5 - T1,3 k€ = Al 3 K
ot at

:A:Z{

cos(wat) —1}
at?

— -4 /at? <A <0

This is the eigenvalue spectrum of the discrete time-
derivative operator of a stable marching in time algorithm!

We consider next the eigenvalues of the discrete Laplace
operator. They are related to the eigenvalues of the 2nd
order time derivative through the wave equation.

C2 Lfin = Afin
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8. Stability criterion — cont.

At any time step, the instantaneous distribution of the field
In space can be Fourier-transformed with respect to the
three spatial axes to produce its 3-D spatial spectrum, or
the plane-wave eigenmodes of the 3-D grid. Each mode at
the point (/,J,K) Is represented as

fler K= 'Foej(ﬂﬂ AX+ﬂyJAy+,BZKAZ)

The total field is a superposition of all possible modes. We
consider one such mode and look for the possible range of
values of the characteristic numbers gy, Sy, 5, . Upon
substitution in the discrete Laplace operator and factoring
out fyelAlexthylayrhKat) e obtain
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8. Stability criterion — cont.

) |:e_jﬂxAX — 24 ejﬂxAX
C +

AX2

e_j:ByAy _2+ejﬂyAy e_jﬁzAZ _2_|_ ejﬁzAZ
+ + =A
AL

Ay2 2

AL

52 |:COS(,8XAX) ~1_cos(Byay)-1_cos(f;a2) —1} A

Rz R 2

It is now obvious that the eigenvalues A are bound within

_4C2( 12+ 12+ 12j£/\£0
AX AY A

Compare with —4/at* <A <0
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8. Stability criterion — cont.

To guarantee numerical stability for any spatial mode, the
range of eigenvalues for the spatial modes

_4(;2( 12 + 12 + 12j£/\£0
AX AY A
must be contained completely within the stable range of
the time-stepping eigenvalues

—4/at? <A <0

1
— (CAt)ZS( 12+ 12+ 12j

AX AY A

If aAX=aYy=az=ah,

2
(CAt)ZS% —) a:C—AtS 3
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8. Stability criterion — cont.

-1
1 1 1 cat 1
3-D |(cat)? < = |la=—+<
(€a1) (AXZ +Ay2 +A22j ah \/§
- cat 1
2-D 2| o4t — |la=—X%
(CA ) _(AXZ +Ay2/ ah \/z
2 2 CAt
1-D (Cat) <aX°| = |a=—<1
ah
In a 1-D problem, if the accuracy criterion of the spatial
guantization ah < A1/18 IS observed, then the accuracy

criterion of the time quantization at <T /18 is automatically
satisfied provided that the stability criterion is enforced.
Note: For 2-D and 3-D problems, the accuracy criterions
should be adjusted accordingly, e.g.,

Ah < 211/(18V3) ~ 1132 e
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